
	

	

Exploratory Data Analysis & Visualization 
 

After clean-up and noise reduction we have already seen some curves that seem 
to behave differently than all the others. A closer look shows some slight 
different behaviour of a bunch of curves around 7s. It looks like there are two 
groups of curves in that region. When signals have steep slopes, it will be more 
difficult to fit a smoothed curve due to large y-changes. Let's use a model 

, where  is the measured signal as function of time, modelled 
as sum of a true underlying signal, s(t), and some noise, n(t). Then, the 
estimated signal  obtained with a (suitable) 
smoothing filter with the set of our measured data points  at times . The error 
residuals  are then a kind of noise measure. At steep slopes this 
error residuals will get usually larger, particularly when there is some inaccuracy 
of the sampling times . Therefore, when there are large residuals (noise 
values), there is normally also more noise variance and the signal estimation is 
less precise. As our goal is to find over all times a good signal estimate, we 
exclude large noise variations at the end (or, we might split up the signal in 
sections where the noise variations are similar and process these sections 
separately). For now, we will exclude the data points beyond 9.46s. The reason 
is that the pumping out phase with large and very rapid changing values starts 
around 9.5 seconds, so it is not desired to include those points in the PCA, 
otherwise the large variational parts during this phase would account for most 
signal variation, obscuring smaller variations in prior sections. Therefore, only 
the first ''idxCutOff'' (473 in this example) points (= 1point * 50Hz * 9.46s) are 
used. 
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Update: As there are data sets with a much longer aspiration phase, dynamic 
cutting off may be used. For this, the initial pressure is determined and as cut-off 
level the 1.1*99-percentile used to determine the time index when data will be 
cut off. 

 

Principal Component Analysis (PCA) 
 

In (statistical) computing packages like MATLAB or R, PCA algorithm is already 
available as library function. So, here we concentrate on our goal of finding a 
good data model described by a few principal components that are linearly 
uncorrelated and that capture most of the data bundle of time-varying pressure 
signal's variance. This is done by projecting the data to the sub-space spanned 



	

	

by the first k principal components. As PCA is a linear method where the data 
matrix needs to be zero mean, achieved by subtracting the column mean, 
assuming standard data format. 

For a more mathematical formulation and lot's of background see 
https://en.wikipedia.org/wiki/Principal_component_analysis. 

Warning: Columns of X are linearly dependent to within machine precision. 

Using only the first 107 components to compute TSQUARED.  

 

PCA Approximation 
 

To check whether the PCA reasonably describes the signals, a scree plot of the 
first 10 principal components is made. The scree plot shows graphically how 
much variability of the original signal data are captured by the first k 
components. Bars show the amount of variability captured by the corresponding 
component and the cumulative sum, shown by the line shows the total variability 
captured. 

 

The scree plot shows that over 85% of variability is explained by the first two 
principal components. 

 

Sparse Signal Reconstruction 
 

If signals can be approximated by a sparse representation, it can be seen as 
building a model with only a few components, just from data. An explicit signal 
approximation can be done by reconstruction with only two principal 
components. When doing a signal reconstruction, the linear sub-space spanned 



	

	

by the first  principal components is described by a linear combination of the 
basis-vectors represented in the original space, i.e. where the original signal data 
lie. In our case it is the 472-dimensional space containing our 110 signal vectors, 
each 472 elements long. Let the input to the PCA algorithm be a  data 
matrix  (n: number of observations, i.e. one row contains one observation 
given is the complete time-signal of length ). Then the maximum number of 
possible principal components is , where the  is due to the 
mean removal. Geometrically the PCA is a rotational tranformation of the orignal, 
mean-subtracted data matrix, such that in the direction of the first component 
the signals have maxium variability and in the direction of the second component 
the signals have again largest variation, given the selection of the previous 
components and so forth. The outputs of the PCA are a  matrix of principal 
component coefficients (also called loadings), where the k-th column corresponds 
to the k-th principal component and is the corresponding basis-function, 
reprented in the original p-dimensional space. Another output, the  matrix 
of principal component scores yields the weights for the linear composition of 
basis-functions to approximate the orignal signal. The  first elements of  
row of the score matrix are the weights for the first  basis-functions and the 
weighted sum plus the original signal mean is the signal approximation with the 
first $k% principal components. 

The first two basis-functions look as follows 

#pricipal components for reconstruction: 2 

 

All the reconstructed signals with two principal components look as follows 



	

	

 

which isn't too bad compared to the original signals, but clearly most of the 
variability is used to reproduce the yellow outlier signals. Let's remove them and 
do the PCA reconstruction again. 

 

As predicted the approximation is now much better, i.e. we have a better model 
as we have less variability in the data by removing the outlier curves. 

And as we have now less signal variation by excluding the outlier signal, also the 
basis functions become better suited to represent the remaining signals 



	

	

 

When leaving away the outlier signals in the data matrix , the basis functions 
start to capture more the local variations in the signal than larger trends due to 
the big differences, clearly seen after the 

Low Dimensional Visualization 
 

As was seen with PCA we can reduce our over 472-dimensional time signals 
(each sampling time-step adds one vector dimension) to only 2 dimensions, 
namely the 2-dimensional subspace spanned by the first two principal 
components. 

 



	

	

Clearly, there are three clusters visible. A simple kNN (k nearest neighbour) 
clustering could partition this two-dimensional subspace as it is obvious by visual 
inspection that there are three clusters. However, let's see if we can explore this 
data structure also with a cluster tree. 

 

Clustering 
 

As the data acquisition seems to behave sometimes differently and some curves 
following distinctively different patterns, clustering is carried out by a cluster 
tree. The goal is to differentiate these different acquisition modes. Again we take 
the first 10 principle components (or all available in case there are fewer). For 
the cluster tree we take the ''Chebychev'' distance metric (maximum coordinate 
difference) and the linkage method as ''complete'', i.e. the furthest distance from 
one element to the other elements in the data set and show the dendogram of 
the cluster tree. 

 

Clustering is carried out by a level-cut, i.e. a simple threshold is applied, which is 
determined such that 3 clusters are obtained. Graphically, a horizontal line that 
cuts the cluster tree three times needs to be selected to get three sub-trees to 
represent the signal groups. This level would roughly be somewhat between 400 
and 750. 

Using maxium 3 of levels. 



	

	

 

 



	

	

 

Three groups can be clearly seen. Group 2 is the priming run (note there are 3 
curves on top of each other (indicated by the #runs=3) due to a software bug 
which recoreded the first signal 3 times. Group 1 and 3 distinguish themselves 
around the 7-second recording time by a jitter and with a constant measurement 
phase, which is lacking in group 1. 

Enlarging Group 1 and Group 3 around the 7s time stamp shows clear differences 
that are strongly picked up by the clustering. Again, it turned out to be a 
software/firmware bug when switching the fluidic path selection valve where for 
some signals a little delay occurred in 56 cases. Also, note that the delayed 
signal is constant in this group (Group 3) for about 0.1s just before the 7s mark, 
another clear indication of a software bug, when the register didn't get updated 
and appeared as a constant value for a few time samples. 



	

	

 

 

 

Summary Data Visualization & Data Exploration 
 

This section of data visualization and investigation with some relative simple 
algorithmic tools has not only shown a parsimonious representation by 
reconstructing original signals by only two weighted model waveforms (the bases 
functions weighted by the principal components), how to group similar signals 
and, last but not least, highlighted that such an analysis can quickly discover 
software bugs which otherwise may stay undetected for a long-time. This is what 



	

	

I call "Statistical Software Debugging", which is far more powerful than 
debugging single memory locations in a C++-Debugger, were one is hardly able 
to see the next few data points and with today's increasing amounts of data, this 
is a preferred way of finding root causes, at least as a starting point. 
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